
March 2017

TOWARDS A SECURE

IOT LANDSCAPE

DANNY DE COCK

HTTP://GODOT.BE/SLIDES

03/03/2017 2

Security challenges for commonly available and used devices

 IoT device not different from any other IT device

 Communicates with its surroundings

 Firmware, operating system, applications, application data, user data, configurations

Happy when it works

 Do not touch/reconfigure a working system

 Limited management of keys, algorithms, protocols, credentials…

 Backward compatibility constricts deployment of secure environments

 Everybody believes he/she is a cryptographer

 Very primitive key management

 User’s lack of security awareness

LIMITED SCOPE

 IoT focuses on functionality, locking-in a client, no focus on security

 Security is afterthought after having secured the client

Each family of devices works in its own silo

 Aggregation of isolated component groups rather than integration

User data, preferences & behavior immediately pushed to cloud services

 Who manages the cloud, who is it and where can you find them?

 User awareness: end-user has no insight about what happens to her data

Authentication, confidentiality and authorization problems

 Silo-based management of keys, preferences, access control settings…

 No real key management for individual instantiations

 Low power = lightweight communications and security protocols

STRAIGHTFORWARD OBSERVATIONS

03/03/2017 3

03/03/2017 4

‘‘OUR SYSTEM IS SECURE: WE USE THE AES’’

What about
Key management
 ‘‘Random’’ keys?

 Authenticated (?) key agreement

 Implementation
 Modes of encryption, initialization vectors,…

 Attacking the implementation

Who holds the keys?
Who can use the keys?

Stored in the clear?

Key archives?

Protocols derived on well known classic protocols, e.g., TLS

 Giving developers more choice can lead to security vulnerabilities

Algorithms typically used:

 Asymmetric: RSA, DSA/DHE, ECDSA, ECDHE

 Symmetric encryption: AES, AES-CCM, AES-GCM

 Symmetric authentication: AES-CCM, HMAC-SHA1/2/3

Current IoT protocols use default algorithms

 AllJoyn – open source, AllSeen Alliance – Qualcomm, Microsoft, AT&T…

 Iotivity – open source, Open Interconnect Consortium – Intel, Samsung, Cisco…

 Thread – open protocol, Thread Group – ARM, Samsung, Qualcomm…

IOT SECURITY PROTOCOLS

03/03/2017 5

 Things

 Controlled devices

 Sensors

 Monitors

 Control points

 Appliances

 Wearables & washables

 Remote controllers

 ‘Personal’ control

 Location & behavior

 Manufacturers

 Updates & control

 Meta controllers, e.g., If -This-Then-That

 Fully automated scenarios

THE INTERNET OF EVERYTHING

Similar functionalities: NEST, NXP, WIGWAG… Images: www.audi.com, www.belkin.com, www.fitbit.com , www.ifttt.com, www.nest.com, www.telenet.be, www.withings.com

Users want

 Free services

 Maximum convenience

 Maximum simplicity

But

 Forced harvesting of user data & settings

 No user-awareness or concern

 All data stored in the cloud

 No user-transparency

 No do-it-yourself-configuration possibilities

 Free services come with promises

 No guarantees

 No commitments

THINGS, DATA, SERVICES, CONTROL – USER VIEW

Image: www.informationsecuritybuzz.com
03/03/2017 7

03/03/2017 8

BENEFITS OF SECURE SOFTWARE

DEVELOPMENT

Application security
 Important emerging requirement in software development
 It is expected… no longer explicitly required

 Controls potential

 Severe brand damage

 Financial loss

 Privacy breaches

Risk-aware customers (financial institutions, governmental
organizations) want to
 Assess the security posture of products they build or purchase

 Plan to ultimately hold vendors accountable for security problems in their software

 Procure reliable and secure software

 Hold vendors accountable for security problems in software

03/03/2017 9

CORE (IOT) SECURITY PROBLEMS

Software development lifecycle does not deal well with security
 Software developers lack structured guidance

 Books on the topic are

 Relatively new

 Collections of unrelated good practices

Security is not a feature that demos well
 Developers tend to focus on core functionality features

Security is addressed ad hoc by developers
 Developers typically provide a minimal set of security services given their limited

security expertise

Applications are too complex to comprehend

03/03/2017 10

SECURE VS. SECURITY SOFTWARE

Secure software
 Application acts according to its specifications

 Provable features of the application

 Software design is the bottleneck

Security software
 Relies on secure software

 Application uses secret and private information
 Electronic payments, voting, signing,…

 Protection of privacy, confidentiality, integrity,…

 Critical use of the user/device/… credentials

03/03/2017 11

WHAT TO DO ABOUT IT?

Large software vendors make lots of effort

Ongoing effort to improve security through its development process

 Involves training and process improvements

Good practices:

 Initial approach: freezing the current status

 Only allow changes to improve overall security

Good system design relies on embedded security

Simplifies security issues: no late add-on

Hides complexity of cryptographic protocols

12

GLOBAL SYSTEM OVERVIEW

Remote User

Insecure

Integrity-protected

Confidential

Secure

Strong authentication Weak authentication

Locally operated

Remotely

accessible

Internet

Local Users

Home

13

SECURITY VIEW

Multimedia

Cluster

Service Providers

& Applications
Devices

Appliance

Cluster

Safety

Cluster

Users

End-to-End

Security

Point-to-Point

Security

03/03/2017

 Third party’s benefit

 Hacking/infecting remote control points

 Very similar to botnet activities

 Compromised meta-controller, e.g.,

 Can provide full access to critical control points

 Enables perfect burglary

 Break-in & entry without signs of break-in!

 Compromised device manufacturer’s control points

 Alien firmware, Trojan behavior of *all* devices

Self-benefit

 Current state of the art allows fabrication of alibi

 Fake presence at home

 Mimic normal behavior remotely

REAL LIFE THREAT – OPEN SESAME

Disclaimer: not claiming the pictured items/service providers have been compromised already

Images: http://www.sevenoaksart.co.uk03/03/2017 14

 Privacy by design
 Avoid transporting and saving plaintext data to the cloud

 Guarantee long-term security

 Informed user consent & version control

 Enforce information tagging

 Security by design – Adversary model?
 Consistent deployment of a security vision saves time and money

 Key material, set of trusted references: keys, certificates – TPM specifications

 Enable decent user and system authentication & authorization

 Consider use of tamper evident hardware where necessary – secure manufactory

 Manageability by design
 Enable & use robust version and update control from the initial start

 Firmware, operating system, application, application modules, device drivers

 User data, configuration, consent

 Usability & configurabilty by design
 Special focus on user friendliness & user/novice convenience

WHAT TO DO ABOUT IT? (DESIGN VIEW)

03/03/2017 15

What to focus on?

 Applications/services

 Long-term security & recovery from algorithm/key/security compromises

 Consider algorithms and protocols as parameters

 Validation of credentials & revocation

 Network infrastructure

 Device identification/authentication/authorization

 Backend authentication/authorization

 Denial of Service prevention & recovery

 Devices have long lifetime

 Cryptanalysis of algorithms

 Side-channel analysis to retrieve long-term keys

 Fault attacks, protocol poking

WHAT TO DO ABOUT IT? (DEVELOPER VIEW)

03/03/2017 16

Avoid reinventing the wheel
 Get inspiration from Trusted Platform Modules, Digital Rights Management…

Enable decent authentication & authorization
 Devices, backend, users, services

 Separate authentication from authentication

 Network security protocols protect confidentiality and integrity
 No protection of information authenticity out-of-the-box

Centralize security knowledge in software/application architects
 Implementers should not have to make delicate security decisions

Good initial security design avoids hard to solve implementation issues
 Goal: nearly-zero configuration

 Security patches do not deal with inherent design flaws

 Simple design is easily understandable/testable/auditable

WHAT TO DO ABOUT IT? (DEVELOPER VIEW)

03/03/2017 17

Apply well known network segregation:

 Demilitarized zones & self-controlled and managed security gateways!

During configuration of intelligent devices

 Prepare separate networks from normal network with Internet access

 Use different settings to initialize/configure devices/services and to use

devices/services

After configuration

 Disable Internet access of critical intelligent devices

 Avoid burglaries (online & physical)

 Disable automated update functionality

 Avoid unwanted/uncontrolled service disruption

WHAT TO DO ABOUT IT? (USER VIEW)

03/03/2017 18

02/03/2017 19

GOOD PRACTICES

Centralize security knowledge in software architects and application
designers
 Implementers should not have to make delicate security decisions

 Cryptographic algorithms and protocols should be considered as modular building
blocks

 Consistent deployment of a security vision saves time and money

 Security expertise concentrated in a few of the most trusted members of the
development organization

 Allows for better depth of knowledge

 Results in more effective and secure results

Good initial security design avoids hard to solve security issues
 Security patches do not deal with inherent design flaws

 Simple design is easily understandable/testable/auditable/updateable/upgradeable

03/03/2017 20

Secure nearly zero-configuration
 Simple hierarchy of devices, users, administrators, service providers

 Seamless interoperability and interaction with other devices

 Initialization of security parameters during device and service discovery

Remote management of security parameters, software, configuration,
users,…
Minimizes maintenance costs

Suited for a highly dynamic client-service architecture

Simple and modular security mechanisms & system architecture
Ideal and easy to understand and verify

ULTIMATE GOAL

02/03/2017 21

Use of Today’s IoT devices provide

 No privacy guarantees whatsoever

 Fake belief you are in control

About home automation

 Not to be used for safety and security critical systems

CLOSING REMARKS

Contact details:

 Email: Danny.DeCock@esat.kuleuven.be

 Slides: http://godot.be/slides

QUESTIONS?

03/03/2017 22

23

PROTOCOL STACKS VIEW

User/Business Layer

Uses devices & services

Application Layer (OSI Layer 7)

Offers Services to Users, Services and Devices

Security Layer (OSI Layer 5 – Session)

Protects Against Remote Evil Services and Devices

Transport Layer (OSI Layer 4)

Provides Reliable Communications

Network Layer (OSI Layer 3)

Provides Network Access

Data Link Layer (OSI Layer 2)

Communication Technologies, e.g., RF, WiFi, IR,…

Service Data

Service Data

Application processing Data

Application processing Data

Device-Device Security

Device-Device Security

Reliable Device-Device Communication

Reliable Device-Device Communication

Device-Device Data Transmission

Device-Device Data Transmission

Data Transmission over Physical Network

Data Transmitted over Physical Network

03/03/2017

24

LAYERED DEVICE VIEW

Device Control Point

Secure Communications Engine

Communications Engine

Application Layer

Secure Communications

Layer

Communications

Layer

Control Point Controlled Device

Device Control Point

Secure Communications Engine

Communications Engine

